Existence of a spanning tree having small diameter

Yoshimi Egawa1 \hspace{1em} Michitaka Furuya2* \hspace{1em} Hajime Matsumura3\
1Department of Applied Mathematics,
Tokyo University of Science,
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
2College of Liberal Arts and Sciences,
Kitasato University,
1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
3College of Education,
Ibaraki University,
2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan

Abstract

In this paper, we prove that for a sufficiently large integer \(d\) and a connected graph \(G\), if \(|V(G)| < \frac{(d+2)(d(G)+1)}{3}\), then there exists a spanning tree \(T\) of \(G\) such that \(\text{diam}(T) \leq d\).

\textbf{Key words and phrases.} diameter, minimum diameter spanning tree, minimum degree.

\textbf{AMS 2010 Mathematics Subject Classification.} 05C05, 05C12.

1 Introduction

In this paper, we consider only finite undirected simple graphs. Let \(G\) be a graph. We let \(V(G)\) and \(E(G)\) denote the vertex set and the edge set of \(G\), respectively. For \(x \in V(G)\), we let \(N_G(x)\) and \(N_G[x]\) denote the (open) neighborhood and the closed neighborhood of \(x\), respectively; thus \(N_G(x) = \{y \in V(G) : xy \in E(G)\}\) and \(N_G[x] = N_G(x) \cup \{x\}\). For \(X \subseteq V(G)\), we let \(G[X]\) denote the subgraph of \(G\) induced by \(X\). Let \(G\) be a connected graph. For \(x, y \in V(G)\), the distance between \(x\) and \(y\), denoted by \(d_G(x,y)\), is the minimum length of a path connecting \(x\) and \(y\).

*e-mail:michitaka.furuya@gmail.com
1e-mail:hajime.matsumura.math@vc.ibaraki.ac.jp
For $X \subseteq V(G)$ and a vertex $y \in V(G)$, we let $d_G(X, y) = \min \{d_G(x, y) : x \in X\}$. For $X \subseteq V(G)$ and $i \in \mathbb{N} \cup \{0\}$, let $N_G^i(X) = \{y \in V(G) : d_G(X, y) = i\}$. For $x \in V(G)$, we let $N_G^0(x) = N_G^1(\{x\})$; thus $N_G^0(x) = \{x\}$ and $N_G^1(x) = N_G^2(x)$. For $x \in V(G)$, the eccentricity of x, denoted by $\text{ecc}_G(x)$, is defined as the maximum of $d_G(x, y)$ as y ranges over $V(G)$. The diameter of G, denoted by $\text{diam}(G)$, is defined by $\text{diam}(G) = \max \{\text{ecc}_G(x) : x \in V(G)\}$, and the radius of G, denoted by $\text{rad}(G)$, is defined by $\text{rad}(G) = \min \{\text{ecc}_G(x) : x \in V(G)\}$. A vertex x of G is central if $\text{ecc}_G(x) = \text{rad}(G)$. For terms and symbols not defined here, we refer the reader to [1].

The purpose of this paper is to give a sufficient condition for the existence of a spanning tree having small diameter. Our primary motivation derives from a minimum diameter spanning tree problem. For a connected graph G, a minimum diameter spanning tree (or MDST) of G is a spanning tree having minimum diameter among all possible spanning trees of G. From the standpoint of applications to a vehicle routing problem, MDST is widely studied in combinatorial optimization theory. For example, for a given connected graph $G = (V, E)$, an MDST of G can be computed in $O(|E||V| \log |V|)$ time (see Theorem 7.4 in [5]). On the other hand, there are few results which give an explicit upper bound of the diameter of an MDST as our main theorems do.

Our second motivation is to give a refinement of a known result concerning the relationship between the diameter and the minimum degree of a graph. In [2], Erdős, Pach, Pollack and Tuza implicitly proved the following theorem.

Theorem A (Erdős, Pach, Pollack and Tuza [2]) Let G be a connected graph with $\delta(G) \geq 2$. If $|V(G)| \leq \frac{(d+1)(\delta(G)+1)}{3}$, then $\text{diam}(G) \leq d$.

Note that even if G is a connected graph with $\text{diam}(G) \leq d$, it is not always true that G has a spanning tree T with $\text{diam}(T) \leq d$. Thus Theorem A gives us no useful information about spanning trees having small diameter.

Recently, Kano and Matsumura [3] posed the following conjecture and proved that the conjecture is true if d is even or $d \in \{5, 7, 9\}$.

Conjecture 1 Let $d \geq 4$ be an integer, and let G be a connected graph. If $|V(G)| \leq \frac{(d+1)(\delta(G)+1)}{3}$, then there exists a spanning tree T of G such that $\text{diam}(T) \leq d$.

Now we give a conjecture which is slightly stronger than Conjecture 1.

Conjecture 2 Let $d \geq 4$ be an integer, and let G be a connected graph. If $|V(G)| < \frac{(d+2)(\delta(G)+1)}{3}$, then there exists a spanning tree T of G such that $\text{diam}(T) \leq d$.

2
Note that if a connected graph G has a spanning tree T with $\text{diam}(T) \leq d$, then $\text{diam}(G) \leq d$. Thus, if Conjecture 2 is true, then it is a refinement of Theorem A.

Now we discuss the sharpness of Conjecture 2. Let $d \geq 4$ and $m \geq 1$ be integers. Let $H_1, H_2, \ldots, H_{d+2}$ be vertex-disjoint complete graphs of order m, and let $G_{d,m}$ be the graph obtained from the union of $H_1, H_2, \ldots, H_{d+2}$ by joining all vertices of H_i to all vertices of H_{i+1} for every i $(1 \leq i \leq d+2)$, where $H_{d+3} = H_1$. Then $|V(G_{d,m})| = (d+2)m = \frac{(d+2)(\delta(G)+1)}{4}$. Furthermore, in [3], Kano and Matsumura showed that $G_{d,m}$ has no spanning tree T such that $\text{diam}(T) \leq d$. Thus, if Conjecture 2 is true, then the condition concerning the order of the graph is sharp.

In this paper, we prove that Conjecture 2 is true for almost all d. Our main theorem is the following.

Theorem 1.1 Let d be an integer with

$$d \geq \begin{cases} 4 & \text{(if } d \equiv 0 \pmod{2}) \\ 7 & \text{(if } d \equiv 1 \pmod{6}) \\ 39 & \text{(if } d \equiv 3 \pmod{6}) \\ 41 & \text{(if } d \equiv 5 \pmod{6}), \end{cases}$$

and let G be a connected graph. If $|V(G)| < \frac{(d+2)(\delta(G)+1)}{3}$, then there exists a spanning tree T of G such that $\text{diam}(T) \leq d$.

On the other hand, we prove that Conjecture 2 is also true for small values of d as follows.

Theorem 1.2 Let $d \in \{5, 9\}$, and let G be a connected graph. If $|V(G)| < \frac{(d+2)(\delta(G)+1)}{4}$, then there exists a spanning tree T of G such that $\text{diam}(T) \leq d$.

We prove Theorem 1.1 for the case where d is even in Section 2. In Section 3, we prepare some lemmas used in the proof of Theorem 1.1 for the case where d is odd, and prove Theorem 1.1 for the case where $d \equiv 1 \pmod{6}$. In Section 4, we prove the remaining cases of Theorem 1.1. In Section 5, we focus on small d, and prove Theorem 1.2.

In the proof of Theorem 1.1, we make use of the following well-known lemmas.

Lemma 1.3 Let T be a tree. Then $2\text{rad}(T) - 1 \leq \text{diam}(T) \leq 2\text{rad}(T)$.

Lemma 1.4 Let $r \geq 1$ be an integer, and let G be a connected graph.

(i) If there exists a vertex $a_1 \in V(G)$ such that $d_G(a_1, x) \leq r$ for all $x \in V(G)$, then G has a spanning tree T such that $\text{diam}(T) \leq 2r$.

3
(ii) If there exists an edge $a_1a_2 \in E(G)$ such that $d_G(\{a_1, a_2\}, x) \leq r$ for all $x \in V(G)$, then G has a spanning tree T such that $\text{diam}(T) \leq 2r + 1$.

2 The case $d \equiv 0 \pmod{2}$

In this section, we show that Theorem 1.1 holds for the case where $d \equiv 0 \pmod{2}$. The following theorem was proved by Kim, Rho, Song and Hwang [4].

Theorem B (Kim, Rho, Song and Hwang [4]) Let G be a connected graph. If $\delta(G) \geq 2$ and $\text{rad}(G) \geq 3$, then $\text{rad}(G) \leq \frac{3|V(G)|}{2(\delta(G)+1)}$.

Lemma 2.1 Let $d \geq 4$ be an integer, and let G be a connected graph. If $|V(G)| < \frac{(d+2)(\delta(G)+1)}{3}$, then $\text{rad}(G) \leq \frac{d+1}{2}$.

Proof. For the moment, assume that $\delta(G) = 1$. Then $|V(G)| < \frac{(d+2)(\delta(G)+1)}{3} = \frac{2(d+2)}{3} \leq d+1$. This implies that the length of any path of G is at most $d-1$. Hence for a spanning tree T of G, it follows from Lemma 1.3 that $2\text{rad}(T)-1 \leq \text{diam}(T) \leq d-1$ (i.e., $\text{rad}(T) \leq \frac{d}{2}$). Since the deletion of edges cannot decrease the radius, it follows that $\text{rad}(G) \leq \frac{d}{2}$, as desired. Thus we may assume that $\delta(G) \geq 2$.

Since $d \geq 4$, if $\text{rad}(G) \leq 2$, then the desired conclusion clearly holds. Thus we may assume that $\text{rad}(G) \geq 3$. Then it follows from Theorem B that

$$\text{rad}(G) \leq \frac{3|V(G)|}{2(\delta(G)+1)} < \frac{3 \cdot (d+2)(\delta(G)+1)}{2(\delta(G)+1)} = \frac{d+2}{2},$$

as desired. ■

Theorem 1.1 for the case where $d \equiv 0 \pmod{2}$ immediately follows from Lemma 2.1.

Lemma 2.2 If $d \geq 4$ is an even integer, then Theorem 1.1 holds.

Proof. Let G be a connected graph such that $|V(G)| < \frac{(d+2)(\delta(G)+1)}{3}$. Since d is even, it follows from Lemma 2.1 that $\text{rad}(G) \leq \frac{d}{2}$. Thus a central vertex a of G satisfies $d_G(a,x) \leq \frac{d}{2}$ for all $x \in V(G)$. Hence by Lemma 1.4(i), G has a spanning tree T such that $\text{diam}(T) \leq 2 \cdot \frac{d}{2} = d$. ■

3 Lemmas

Throughout this section, fix an odd integer $d \geq 5$, and write $d = 6k + \alpha$ ($k \in \mathbb{N} \cup \{0\}, \alpha \in \{1,3,5\}$). A set X of vertices of a graph G is d-good if

- **(G1)** either $|X| = 1$, or $|X| = 2$ and the vertices in X are adjacent, and
\((G2)\) \[d_G(X, x) \leq 3k + \frac{\alpha - 1}{2} \] for all \(x \in V(G)\).

Lemma 3.1 If a graph \(G\) has a \(d\)-good set, then \(G\) has a spanning tree \(T\) such that \(\text{diam}(T) \leq d\).

Proof. If \(\{a\}\) is \(d\)-good for a vertex \(a \in V(G)\), then by Lemma 1.4(i), \(G\) has a spanning tree \(T\) with \(\text{diam}(T) \leq 2(3k + \frac{\alpha - 1}{2}) < d\); if \(\{a, b\}\) is \(d\)-good for two vertices \(a, b \in V(G)\) with \(ab \in E(G)\), then by Lemma 1.4(ii), \(G\) has a spanning tree \(T\) with \(\text{diam}(T) \leq 2(3k + \frac{\alpha - 1}{2}) + 1 = d\). In either case, we obtain the desired conclusion.

In the rest of this section, fix a connected graph \(G\) with \(|V(G)| < \frac{(d+2)(\delta(G)+1)}{3} = (2k + \frac{\alpha+2}{2})(\delta(G) + 1)\) and a central vertex \(a_0\) of \(G\). Set \(\delta := \delta(G)\), and for \(i \geq 0\), let \(X_i := N_G^i(a_0)\). By Lemma 2.1, \(\text{rad}(G) \leq \frac{d+1}{2} = 3k + \frac{\alpha+1}{2}\). Thus the following lemma holds.

Lemma 3.2 For \(i \geq 3k + \frac{\alpha+3}{2}\), \(X_i = \emptyset\).

Lemma 3.3 Let \(h\) and \(i_0\) be integers with \(h \geq 2\) and \(h + 1 \leq i_0 \leq 3k + \frac{\alpha+1}{2} - h\). If there exists a vertex \(a_{i_0} \in X_{i_0}\) such that \(d_G(a_{i_0}, x) \leq h\) for all \(x \in X_{i_0}\), then \(G\) has a \(d\)-good set.

Proof. Let \(a_0a_1 \cdots a_{i_0}\) be a shortest path joining \(a_0\) and \(a_{i_0}\). Note that \(a_i \in X_i\) for each \(i\) (\(1 \leq i \leq i_0 - 1\)). We prove that \(\{a_h, a_{h+1}\}\) is \(d\)-good. Let \(x \in V(G)\), and let \(i_1\) be the index such that \(x \in X_{i_1}\). It suffices to show that \(d_G(\{a_h, a_{h+1}\}, x) \leq 3k + \frac{\alpha - 1}{2}\). If \(i_1 \leq i_0 - 1\), then

\[
d_G(a_h, x) \leq d_G(a_h, a_0) + d_G(a_0, x) = h + i_1 \leq h + (i_0 - 1) \leq 3k + \frac{\alpha - 1}{2},
\]

as desired. Thus we may assume that \(i_1 \geq i_0\). Then there exists a vertex \(x' \in X_{i_0}\) such that \(d_G(x', x) = i_1 - i_0\). Since \(i_1 \leq 3k + \frac{\alpha+1}{2}\) by Lemma 3.2, it follows that

\[
d_G(a_{h+1}, x) \leq d_G(a_{h+1}, a_{i_0}) + d_G(a_{i_0}, x') + d_G(x', x) \\
\leq (i_0 - (h + 1)) + h + (i_1 - i_0) \\
\leq i_1 - 1 \\
\leq 3k + \frac{\alpha - 1}{2},
\]

as desired.

Lemma 3.4 For \(i\) \((3 \leq i \leq 3k + \frac{\alpha-3}{2})\), if \(|X_{i-1} \cup X_i \cup X_{i+1}| \leq 2\delta + 1\), then \(G\) has a \(d\)-good set.
Proof. If \(X_i = \emptyset \), then \(\{a_0\} \) is a \(d \)-good set. Thus we may assume that \(X_i \neq \emptyset \). Let \(a_i \in X_i \). For each \(x \in X_i \), since \(N_G[a_i] \cup N_G[x] \subseteq X_{i-1} \cup X_i \cup X_{i+1} \),

\[
2 \delta + 1 \geq |X_{i-1} \cup X_i \cup X_{i+1}|
\]

\[
\geq |N_G[a_i]| + |N_G[x]| - |N_G[a_i] \cap N_G[x]|
\]

\[
\geq 2(\delta + 1) - |N_G[a_i] \cap N_G[x]|,
\]

and hence \(N_G[a_i] \cap N_G[x] \neq \emptyset \). In particular, \(d_G(a_i, x) \leq 2 \) for each \(x \in X_i \). Thus, applying Lemma 3.3 with \(h = 2 \), we see that \(G \) has a \(d \)-good set. \(\Box \)

Lemma 3.5 If \(\alpha = 1 \), then Theorem 1.1 holds.

Proof. Note that \(|V(G)| < (2k + 1)(\delta + 1) \). By Lemma 3.1, it suffices to show that \(G \) has a \(d \)-good set. By way of contradiction, suppose that \(G \) has no \(d \)-good set (i.e., for any vertices \(a, b \in V(G) \) with \(a = b \) or \(ab \in E(G) \), there exists a vertex \(x \in V(G) \) such that \(d_G(\{a, b\}, x) \geq 3k + 1 \)). Since \(\{a_0\} \) is not \(d \)-good, we have \(X_{3k+1} \neq \emptyset \). Let \(a_{3k} \in X_{3k} \), and let \(a_0a_1 \cdots a_{3k} \) be a shortest path joining \(a_0 \) and \(a_{3k} \). Note that \(a_i \in X_i \) for each \(i \) \((1 \leq i \leq 3k - 1) \). By Lemmas 3.2 and 3.4,

\[
|V(G)| = |N_G[a_0]| + \sum_{1 \leq j \leq k} |X_{3j-1} \cup X_{3j} \cup X_{3j+1}|
\]

\[
\geq (\delta + 1) + (k - 1)(2\delta + 2) + |X_{3k-1} \cup X_{3k} \cup X_{3k+1}|.
\]

Since \(|V(G)| < (2k + 1)(\delta + 1) \), this implies that \(|X_{3k-1} \cup X_{3k} \cup X_{3k+1}| \leq 2\delta + 1 \). Hence

\[
d_G(a_{3k}, x) \leq 2 \text{ for all } x \in X_{3k}.
\] (3.1)

Since \(\{a_2, a_3\} \) is not \(d \)-good, there exists a vertex \(x^* \in V(G) \) such that \(d_G(\{a_2, a_3\}, x^*) \geq 3k + 1 \). Let \(i \) be the index such that \(x^* \in X_i \). Since

\[
3k + 1 \leq d_G(a_2, x^*) \leq d_G(a_2, a_0) + d_G(a_0, x^*) = 2 + i,
\]

we have \(3k - 1 \leq i \leq 3k + 1 \). If \(N_G[x^*] \cap X_{3k} \neq \emptyset \), say \(y \in N_G[x^*] \cap X_{3k} \), then by (3.1),

\[
d_G(a_3, x^*) \leq d_G(a_3, a_{3k}) + d_G(a_{3k}, y) + d_G(y, x^*) \leq (3k - 3) + 2 + 1 = 3k,
\]

which is a contradiction. Thus

\[
N_G[x^*] \cap X_{3k} = \emptyset.
\] (3.2)

In particular, \(i = 3k - 1 \). Let \(a_0b_1 \cdots b_{3k-1} \) be a shortest path of \(G \) joining \(a_0 \) and \(x^* \) where \(b_{3k-1} = x^* \). Note that \(b_i \in X_i \) for each \(i \) \((1 \leq i \leq 3k - 2) \).
Let \(c \in X_{3k+1} \). We now focus on the set \(A = \{c\} \cup \{a_{3j-2} : 1 \leq j \leq k\} \cup \{b_{3j-1} : 1 \leq j \leq k\} \) (see Figure 1). Note that \(|A| = 2k+1\). Since \(|V(G)| < (2k+1)(\delta+1)\) and \(\sum_{u \in A} |N_G[u]| \geq |A| (\delta + 1) = (2k+1)(\delta + 1)\), there exist two vertices \(u, v \in A \) such that \(N_G[u] \cap N_G[v] \neq \emptyset \). This together with (3.2) implies that one of the following holds:

(A1) \(N_G[a_{3j+1}] \cap N_G[b_{3j-1}] \neq \emptyset \) for some \(j \) (1 \(\leq j \leq k \)),

(A2) \(N_G[a_{3j-2}] \cap N_G[b_{3j-1}] \neq \emptyset \) for some \(j \) (2 \(\leq j \leq k \)), or

(A3) \(N_G[a_1] \cap N_G[b_2] \neq \emptyset \).

If (A1) holds, then
\[
d_G(a_3, x^*) \leq d_G(a_3, a_{3j+1}) + d_G(a_{3j+1}, b_{3j-1}) + d_G(b_{3j-1}, b_{3k-1})
\leq ((3j + 1) - 3) + 2 + ((3k - 1) - (3j - 1))
= 3k;
\]

if (A2) holds, then
\[
d_G(a_3, x^*) \leq d_G(a_3, a_{3j-2}) + d_G(a_{3j-2}, b_{3j-1}) + d_G(b_{3j-1}, b_{3k-1})
\leq ((3j - 2) - 3) + 2 + ((3k - 1) - (3j - 1))
= 3k - 3;
\]

if (A3) holds, then
\[
d_G(a_2, x^*) \leq d_G(a_2, a_1) + d_G(a_1, b_2) + d_G(b_2, b_{3k-1})
\leq 1 + 2 + ((3k - 1) - 2)
= 3k.
\]

In any case, we obtain a contradiction. \(\blacksquare \)
Lemma 3.6 Suppose that $\alpha \in \{3, 5\}$, $k \geq 1$, and there exist vertices $a_2, b_2 \in X_2$ such that for each i ($3k + \frac{\alpha - 5}{2} \leq i \leq 3k + \frac{\alpha + 1}{2}$), we have $d_G(\{a_2, b_2\}, x) = i - 2$ for all $x \in X_i$ (here a_2 may be equal to b_2). Then G has a d-good set.

Proof. By way of contradiction, suppose that G has no d-good set (i.e., for any vertices $a, b \in V(G)$, if $a = b$ or $ab \in E(G)$, then there exists a vertex $x \in V(G)$ such that $d_G(\{a, b\}, x) \geq 3k + \frac{\alpha + 1}{2}$). Since $\{a_0\}$ is not d-good, we have $X_{3k + \frac{\alpha + 1}{2}} \neq \emptyset$. By Lemma 3.2, $X_{3k + \frac{\alpha + 1}{2}} = \emptyset$.

For the moment, we suppose that $d_G(\{a_2, b_2\}) \leq 3$. Then there exist vertices $a'_2 \in N_G[a_2]$ and $b'_2 \in N_G[b_2]$ such that $a'_2 = b'_2$ or $a'_2 b'_2 \in E(G)$. For $x \in V(G)$, if $x \in \bigcup_{3k + \frac{\alpha - 5}{2} \leq i \leq 3k + \frac{\alpha + 1}{2}} X_i$, then by the assumption of the lemma,

$$d_G(\{a'_2, b'_2\}, x) \leq 1 + d_G(\{a_2, b_2\}, x) \leq 3k + \frac{\alpha - 1}{2};$$

if $x \in \bigcup_{0 \leq i \leq 3k + \frac{\alpha - 5}{2}} X_i$, then

$$d_G(\{a'_2, b'_2\}, x) \leq 1 + d_G(\{a_2, b_2\}, a_0) + d_G(a_0, x) \leq 1 + 2 + \left(3k + \frac{\alpha - 7}{2}\right).$$

Since $x \in V(G)$ is arbitrary, this implies that $\{a'_2, b'_2\}$ is d-good, which is a contradiction. Thus

$$d_G(\{a_2, b_2\}) \geq 4. \quad (3.3)$$

Let $a_1 \in N_G(a_2) \cap X_1$ and $b_1 \in N_G(b_2) \cap X_1$.

Claim 3.1 If $|N_G(a_1) \cap N_G(b_1)| < \frac{\delta + 1}{3}$, then $|X_0 \cup X_1 \cup X_2| > \frac{5(\delta + 1)}{3}$.

Proof. Since $a_1 \neq b_1$ and $a_1 b_1 \notin E(G)$ by (3.3),

$$|X_0 \cup X_1 \cup X_2| \geq |N_G[a_1] \cup N_G[b_1]|$$

$$= |N_G[a_1]| + |N_G[b_1]| - |N_G[a_1] \cap N_G(b_1)|$$

$$> 2(\delta + 1) - \frac{\delta + 1}{3},$$

as desired. ■

Claim 3.2 If $|N_G(a_1) \cap N_G(b_1)| \geq \frac{\delta + 1}{3}$, then $|\bigcup_{0 \leq i \leq 3} X_i| \geq \frac{7(\delta + 1)}{3}$.

Proof. Since $N_G[a_2], N_G[b_2]$ and $N_G(a_1) \cap N_G(b_1)$ are pairwise disjoint by (3.3),

$$\left| \bigcup_{0 \leq i \leq 3} X_i \right| \geq |N_G[a_2]| + |N_G[b_2]| + |N_G(a_1) \cap N_G(b_1)| \geq 2(\delta + 1) + \frac{\delta + 1}{3},$$

as desired. ■

Recall that $|V(G)| < (2k + \frac{\alpha + 2}{3})(\delta + 1)$ and $X_{3k + \frac{\alpha + 3}{2}} = \emptyset$. 8
Claim 3.3 Either $\alpha = 3$ and $|N_G(a_1) \cap N_G(b_1)| \geq \frac{5+1}{3}$, or $\alpha = 5$ and $|N_G(a_1) \cap N_G(b_1)| < \frac{5+1}{3}$.

Proof. By way of contradiction, suppose that either $\alpha = 3$ and $|N_G(a_1) \cap N_G(b_1)| < \frac{5+1}{3}$, or $\alpha = 5$ and $|N_G(a_1) \cap N_G(b_1)| \geq \frac{5+1}{3}$. By Lemma 3.4, $|X_{i-1} \cup X_i \cup X_{i+1}| \geq 2(\delta + 1)$ for all i ($3 \leq i \leq 3k + \frac{a-3}{2}$). Hence, if $\alpha = 3$, then by Claim 3.1,

$$\left(2k + \frac{5}{3}\right)(\delta + 1) > |V(G)|$$

$$= \left|X_0 \cup X_1 \cup X_2\right| + \sum_{1 \leq j \leq k} |X_{3j} \cup X_{3j+1} \cup X_{3j+2}|$$

$$\geq \frac{5(\delta + 1)}{3} + 2(k-1)(\delta + 1) + |X_{3k} \cup X_{3k+1} \cup X_{3k+2}|;$$

if $\alpha = 5$, then by Claim 3.2,

$$\left(2k + \frac{7}{3}\right)(\delta + 1) > |V(G)|$$

$$= \left|\bigcup_{0 \leq i \leq 3} X_i\right| + \sum_{1 \leq j \leq k} |X_{3j+1} \cup X_{3j+2} \cup X_{3j+3}|$$

$$\geq \frac{7(\delta + 1)}{3} + 2(k-1)(\delta + 1) + |X_{3k+1} \cup X_{3k+2} \cup X_{3k+3}|.$$

In either case, we obtain

$$\left|X_{3k+\frac{a-3}{2}} \cup X_{3k+\frac{a-1}{2}} \cup X_{3k+\frac{a+1}{2}}\right| < 2(\delta + 1).$$

This implies that $N_G[x] \cap N_G[x'] \neq \emptyset$ for any $x, x' \in X_{3k+\frac{a-3}{2}} \cup X_{3k+\frac{a+1}{2}}$.

Fix a vertex $x^* \in X_{3k+\frac{a-1}{2}}$. Since $d_G(\{a_2, b_2\}, x^*) = 3k + \frac{a-5}{2}$, we may assume that $d_G(a_2, x^*) = 3k + \frac{a-5}{2}$. For $x \in V(G)$, if $x \in X_{3k+\frac{a-1}{2}} \cup X_{3k+\frac{a+1}{2}}$, then $d_G(a_2, x) = d_G(a_2, x^*) + d_G(x^*, x) \leq (3k + \frac{a-5}{2}) + 2$; if $x \in V(G) - (X_{3k+\frac{a-1}{2}} \cup X_{3k+\frac{a+1}{2}})$, then $d_G(a_1, x) \leq d_G(a_1, a_0) + d_G(a_0, x) \leq 1 + (3k + \frac{a-3}{2})$. Thus $d_G(\{a_1, a_2\}, x) \leq 3k + \frac{a-1}{2}$ for all $x \in V(G)$. Hence $\{a_1, a_2\}$ is d-good, which is a contradiction. ■

By Lemma 3.4, $|X_{i-1} \cup X_i \cup X_{i+1}| \geq 2(\delta + 1)$ for all i ($3 \leq i \leq 3k + \frac{a-3}{2}$). Hence, if $\alpha = 3$, then

$$\left(2k + \frac{5}{3}\right)(\delta + 1) > |V(G)|$$

$$= |N_G[a_0]| + \sum_{1 \leq j \leq k} |X_{3j-1} \cup X_{3j} \cup X_{3j+1}| + |X_{3k+2}|$$

$$\geq (\delta + 1) + 2k(\delta + 1) + |X_{3k+2}|;$$
if $\alpha = 5$, then by Claims 3.1 and 3.3,
\[
\left(2k + \frac{7}{3}\right) (\delta + 1) > |V(G)|
\]
\[
= |X_0 \cup X_1 \cup X_2| + \sum_{1 \leq j \leq k} |X_{3j} \cup X_{3j+1} \cup X_{3j+2}| + |X_{3k+3}|
\geq \frac{5(\delta + 1)}{3} + 2k(\delta + 1) + |X_{3k+3}|.
\]
In either case, we obtain
\[
|X_{3k+\frac{\alpha-1}{2}}| < \frac{2(\delta + 1)}{3}.
\] (3.4)

Furthermore, if $\alpha = 3$, then by Claims 3.2 and 3.3,
\[
\left(2k + \frac{5}{3}\right) (\delta + 1) > |V(G)|
\]
\[
= |N_G[a_0]| + \sum_{1 \leq j \leq k} |X_{3j-1} \cup X_{3j} \cup X_{3j+1}| + |X_{3k+2} \cup X_{3k+3}|
\geq (\delta + 1) + 2k(\delta + 1) + |X_{3k+2} \cup X_{3k+3}|.
\]

if $\alpha = 5$, then
\[
\left(2k + \frac{7}{3}\right) (\delta + 1) > |V(G)|
\]
\[
= |N_G[a_0]| + \sum_{1 \leq j \leq k} |X_{3j-1} \cup X_{3j} \cup X_{3j+1}| + |X_{3k+2} \cup X_{3k+3}|
\geq (\delta + 1) + 2k(\delta + 1) + |X_{3k+2} \cup X_{3k+3}|.
\]

In either case, we obtain
\[
|X_{3k+\frac{\alpha-1}{2}} \cup X_{3k+\frac{\alpha+1}{2}}| < \frac{4(\delta + 1)}{3}.
\] (3.5)

It follows from (3.4) and (3.5) that
\[
\delta + 1 = \frac{2(\delta + 1)}{3} + \frac{\delta + 1}{3} > \frac{|X_{3k+\frac{\alpha-1}{2}} \cup X_{3k+\frac{\alpha+1}{2}}|}{2} + \frac{|X_{3k+\frac{\alpha+1}{2}}}{2}.
\]

This implies that
\[
|N_G[x] \cap X_{3k+\frac{\alpha-1}{2}}| \geq (\delta + 1) - \frac{|X_{3k+\frac{\alpha+1}{2}}|}{2} > \frac{|X_{3k+\frac{\alpha-1}{2}}}{2} \text{ for all } x \in X_{3k+\frac{\alpha+1}{2}}.
\] (3.6)

Recall that $d_G(a_2, b_2, x) = 3k + \frac{\alpha-5}{2}$ for all $x \in X_{3k+\frac{\alpha-1}{2}}$. By the symmetry of a_2 and b_2, we may assume that
\[
\left| \left\{ x \in X_{3k+\frac{\alpha-1}{2}} : d_G(a_2, x) = 3k + \frac{\alpha-5}{2} \right\} \right| \geq \frac{|X_{3k+\frac{\alpha-1}{2}}|}{2}.
\] (3.7)
By (3.6) and (3.7), each vertex \(x \in X_{3k+\frac{\alpha+1}{2}} \) is adjacent to a vertex \(y_x \in X_{3k+\frac{\alpha+1}{2}} \) such that \(d_G(a_2, y_x) = 3k + \frac{\alpha-5}{2} \). Thus for \(x \in V(G) \), if \(x \in X_{3k+\frac{\alpha+1}{2}} \), then
\[
d_G(a_1, x) \leq d_G(a_1, a_2) + d_G(a_2, y_x) + d_G(y_x, x) = 1 + \left(3k + \frac{\alpha-5}{2} \right) + 1;
\]
if \(x \in V(G) - X_{3k+\frac{\alpha+1}{2}} \), then \(d_G(a_0, x) \leq 3k + \frac{\alpha-1}{2} \). Consequently \(d_G({a_0, a_1}, x) \leq 3k + \frac{\alpha-1}{2} \) for all \(x \in V(G) \). Therefore \(\{a_0, a_1\} \) is \(d \)-good, which is a contradiction.

This completes the proof of Lemma 3.6. ■

4 The case \(d \equiv 1 \pmod{2} \)

In this section, we complete the proof of Theorem 1.1. Let \(d \) and \(G \) be as in Theorem 1.1, and write \(d = 6k + \alpha \) (\(k \in \mathbb{N} \cup \{0\} \), \(0 \leq \alpha \leq 5 \)). By Lemmas 2.2 and 3.5, we may assume that \(\alpha \in \{3, 5\} \). Note that
\[
|V(G)| < \begin{cases} (2k + \frac{5}{3})(\delta + 1) & (\alpha = 3) \\ (2k + \frac{7}{3})(\delta + 1) & (\alpha = 5) \end{cases}
\]
and \(k \geq 6 \). Let \(a_0 \) be a central vertex of \(G \). Set \(\delta := \delta(G) \) and for \(i \geq 0 \), let \(X_i := N_{k^i}(a_0) \).

By way of contradiction, suppose that \(G \) has no spanning tree \(T \) such that \(\text{diam}(T) \leq d \). Then by Lemma 3.1, \(G \) has no \(d \)-good set. Since \(\{a_0\} \) is not \(d \)-good, we have \(X_{3k+\frac{\alpha+1}{2}} \neq \emptyset \). By Lemma 3.2, \(X_{3k+\frac{\alpha+1}{2}} = \emptyset \). By Lemma 3.4,
\[
|X_{i-1} \cup X_i \cup X_{i+1}| \geq 2\delta + 2 \quad \text{for all } i \quad \left(3 \leq i \leq 3k + \frac{\alpha-3}{2} \right).
\]

Claim 4.1
(i) We have \(|\bigcup_{5 \leq i \leq 13} X_i| < 7(\delta + 1) \).

(ii) For \(i_0 \in \{6, 9\} \), \(|\bigcup_{i_0-1 \leq i \leq i_0+1} X_i| < 3(\delta + 1) \) and \(|\bigcup_{i_0-1 \leq i \leq i_0+4} X_i| < 5(\delta + 1) \).

Proof. We first show that (i) holds. Suppose that \(|\bigcup_{5 \leq i \leq 13} X_i| \geq 7(\delta + 1) \). It follows from (4.1) that if \(\alpha = 3 \), then
\[
|V(G)| \geq |N_G[a_0]| + \sum_{\substack{1 \leq j \leq k \\{2,3,4\}}} |X_{3j-1} \cup X_{3j} \cup X_{3j+1}| + \left| \bigcup_{5 \leq i \leq 13} X_i \right| \\
\geq (\delta + 1) + 2(k-3)(\delta + 1) + 7(\delta + 1) \\
> \left(2k + \frac{5}{3} \right)(\delta + 1);
\]
if $\alpha = 5$, then for $z \in X_{3k+3}$,

$$|V(G)| \geq |N_G[a_0]| + \sum_{1 \leq j \leq k} |X_{3j-1} \cup X_{3j} \cup X_{3j+1}| + \bigcup_{5 \leq i \leq 13} X_i | + |N_G[z]|$$

$$\geq (\delta + 1) + 2(k - 3)(\delta + 1) + 7(\delta + 1) + (\delta + 1)$$

$$> \left(2k + \frac{7}{3}\right)(\delta + 1).$$

In either case, we obtain a contradiction. Thus (i) holds.

For $i_0 \in \{6, 9\}$, if $|\bigcup_{i_0-1 \leq i \leq i_0+1} X_i| \geq 3(\delta + 1)$ or $|\bigcup_{i_0-1 \leq i \leq i_0+4} X_i| \geq 5(\delta + 1)$, then by (4.1), we have $|\bigcup_{5 \leq i \leq 13} X_i| \geq 7(\delta + 1)$, which contradicts (i). Thus (ii) holds. ■

For each $i \in \{6, 9\}$, let H_i be the graph on X_i defined by

$$E(H_i) = \{xy : x, y \in X_i, 1 \leq d_G(x, y) \leq 2\},$$

and let $\alpha(H_i)$ denote the independence number of H_i, i.e., the maximum cardinality of a subset of X_i which is independent in H_i.

Claim 4.2 For each $i_0 \in \{6, 9\}$, $\alpha(H_{i_0}) \leq 2$.

Proof. Suppose that $\alpha(H_{i_0}) \geq 3$. Then for an independent set $\{x_1, x_2, x_3\}$ of H_{i_0}, $N_G[x_1]$, $N_G[x_2]$ and $N_G[x_3]$ are pairwise disjoint subsets of $X_{i_0-1} \cup X_{i_0} \cup X_{i_0+1}$. Hence

$$|X_{i_0-1} \cup X_{i_0} \cup X_{i_0+1}| \geq |N_G[x_1]| + |N_G[x_2]| + |N_G[x_3]| \geq 3(\delta + 1),$$

which contradicts Claim 4.1(ii). ■

Claim 4.3 For each $i_0 \in \{6, 9\}$, H_{i_0} consists of exactly two complete components.

Proof. Suppose that H_{i_0} is connected. It is known that if a connected graph H satisfies $\alpha(H) \leq 2$, then rad$(H) \leq 2$. Thus by Claim 4.2, rad$(H_{i_0}) \leq 2$. Let c be a central vertex of H_{i_0}. Then for every vertex $x \in X_{i_0}$, we have $d_G(c, x) \leq 2d_{H_{i_0}}(c, x) \leq 4$. Note that $4 + 1 \leq i_0 \leq 3k + \frac{\alpha + 1}{2} - 4$ because $k \geq 6$ and $\alpha \in \{3, 5\}$. Hence, applying Lemma 3.3 with $h = 4$, we see that G has a d-good set, which is a contradiction. Thus H_{i_0} is disconnected. This together with Claim 4.2 leads to the desired conclusion. ■

For each $i_0 \in \{6, 9\}$, let A_{i_0} and B_{i_0} be disjoint subsets of X_{i_0} such that H_{i_0} consists of two complete components $H_{i_0}[A_{i_0}]$ and $H_{i_0}[B_{i_0}]$. By the definition of H_{i_0},
\(X_{i_0} = A_{i_0} \cup B_{i_0}\) and

- for \(x, x' \in A_{i_0}\) and \(y, y' \in B_{i_0}\), \(d_G(x, x') \leq 2\), \(d_G(y, y') \leq 2\) and \(d_G(x, y) \geq 3\).

For \(i_0 \in \{6, 9\}\) and \(s \in \{0, 1, 2, 3\}\), set \(A^s_{i_0} = N^s_G(A_{i_0}) \cap X_{i_0+s}\) and \(B^s_{i_0} = N^s_G(B_{i_0}) \cap X_{i_0+s}\). Note that \(A^0_{i_0} = A_{i_0}, B^0_{i_0} = B_{i_0}\) and \(X_{i_0+s} = A^s_{i_0} \cup B^s_{i_0}\).

Claim 4.4 Let \(i_0 \in \{6, 9\}\), and let \(s, t \in \{0, 1, 2\}\) be integers with \((s, t) \neq (2, 2)\). Then \(d_G(A^s_{i_0}, B^t_{i_0}) \geq 3\).

Proof. Suppose that there exist \(a \in A^s_{i_0}\) and \(b \in B^t_{i_0}\) such that \(d_G(a, b) \leq 2\). Let \(a_{i_0} \in A_{i_0}\) and \(b_{i_0} \in B_{i_0}\) be vertices such that \(d_G(a, a_{i_0}) = s\) and \(d_G(b, b_{i_0}) = t\). Without loss of generality, we may assume that \(s \leq t\). Then \(s \leq 1\).

Let \(x \in X_{i_0+t}\). If \(x \in A^t_{i_0}\), then for a vertex \(a'_{i_0} \in A_{i_0}\) with \(d_G(a'_{i_0}, x) = t\),

\[d_G(b, x) = d_G(b, a) + d_G(a, a_{i_0}) + d_G(a_{i_0}, a'_{i_0}) + d_G(a'_{i_0}, x) \leq 2 + s + 2 + t \leq t + 5;\]

if \(x \in B^t_{i_0}\), then for a vertex \(b'_{i_0} \in B_{i_0}\) with \(d_G(b'_{i_0}, x) = t\),

\[d_G(b, x) = d_G(b, b_{i_0}) + d_G(b_{i_0}, b'_{i_0}) + d_G(b'_{i_0}, x) \leq t + 2 + t \leq t + 4.\]

In either case, we have \(d_G(b, x) \leq t + 5\). Since \(t + 6 \leq i_0 + t \leq 3k + \frac{n+1}{2} - (t + 5)\), applying Lemma 3.3 with \(h = t + 5\), we see that \(G\) has a \(d\)-good set, which is a contradiction. \(\blacksquare\)

Claim 4.5 For \(i_0 \in \{6, 9\}\), \(d_G(A^2_{i_0}, B^2_{i_0}) \geq 3\).

Proof. Suppose that there exist \(a \in A^2_{i_0}\) and \(b \in B^2_{i_0}\) such that \(d_G(a, b) \leq 2\). Let \(aa_{i_0+1}a_{i_0}\) be a shortest path joining \(a\) and \(A_{i_0}\), and let \(bb_{i_0+1}b_{i_0}\) be a shortest path joining \(b\) and \(B_{i_0}\). Note that \(a_{i_0+1} \in A^1_{i_0}\) and \(b_{i_0+1} \in B^1_{i_0}\).

If \(d_G(a, b) \leq 1\), then \(d_G(a_{i_0+1}, b) \leq d_G(a_{i_0+1}, a) + d_G(a, b) \leq 1 + 1\), which contradicts Claim 4.4. Thus \(d_G(a, b) = 2\) (i.e., \(a \neq b\), \(ab \notin E(G)\) and \(N_G(a) \cap N_G(b) \neq \emptyset\)). Let \(c \in N_G(a) \cap N_G(b)\). Note that \(c \in X_{i_0+1} \cup X_{i_0+2} \cup X_{i_0+3}\). Suppose that \(c \in X_{i_0+1} \cup X_{i_0+2}\). Without loss of generality, we may assume that \(c \in A^1_{i_0} \cup A^2_{i_0}\). Then for \(c^* \in N_G[c] \cap A^1_{i_0}\), \(d_G(c^*, b) \leq d_G(c^*, c) + d_G(c, b) \leq 1 + 1\), which contradicts Claim 4.4. Thus \(c \in X_{i_0+3}\).

Subclaim 4.5.1 One of the following holds:

(i) for every \(x \in A^2_{i_0}\), \(d_G(c, x) \leq 6\); or

(ii) for every \(y \in B^2_{i_0}\), \(d_G(c, y) \leq 6\).
Claim 4.4, (4.2) and (4.3), these sets are pairwise disjoint. Since they are subsets of Claim 4.1(ii).

Subclaim 4.6.1 Suppose that there exist $x_{i_0+2} \in A^2_{i_0}$ and $y_{i_0+2} \in B^2_{i_0}$ such that $d_G(c, x_{i_0+2}) \geq 7$ and $d_G(c, y_{i_0+2}) \geq 7$. Let $x_{i_0+2}a'_{i_0+1}a_0$ be a shortest path joining x_{i_0+2} and A_{i_0}, and let $y_{i_0+2}b'_{i_0+1}b_0$ be a shortest path joining y_{i_0+2} and B_{i_0}. Note that $a'_{i_0+1} \in A^1_{i_0}$ and $b'_{i_0+1} \in B^1_{i_0}$. If $d_G(c, a'_{i_0+1}) \leq 2$, then

$$d_G(c, x_{i_0+2}) = d_G(c, a'_i) + d_G(a'_{i_0+1}, x_{i_0+2}) \leq 2 + 1;$$

if $d_G(a_{i_0}, a'_{i_0+1}) \leq 2$, then

$$d_G(c, x_{i_0+2}) = d_G(c, a) + d_G(a, a_{i_0}) + d_G(a_{i_0}, a'_{i_0+1}) + d_G(a'_{i_0+1}, x_{i_0+2}) \leq 1 + 2 + 2 + 1.$$

In either case, we obtain a contradiction. Thus

$$d_G(c, a'_{i_0+1}) \geq 3 \quad \text{and} \quad d_G(a_{i_0}, a'_{i_0+1}) \geq 3. \quad (4.2)$$

By a similar argument, we also get

$$d_G(c, b'_{i_0+1}) \geq 3 \quad \text{and} \quad d_G(b_{i_0}, b'_{i_0+1}) \geq 3. \quad (4.3)$$

Now we consider five sets $N_G[c], N_G[a_{i_0}], N_G[a'_{i_0+1}], N_G[b_{i_0}], N_G[b'_{i_0+1}]$. By Claim 4.4, (4.2) and (4.3), these sets are pairwise disjoint. Since they are subsets of $\bigcup_{i_0-1 \leq i' \leq i_0+4} X_{i'}$, it follows that $|\bigcup_{i_0-1 \leq i' \leq i_0+4} X_{i'}| \geq 5(\delta + 1)$, which contradicts Claim 4.1(ii).

Considering Subclaim 4.5.1, without loss of generality, we may assume that $d_G(c, x) \leq 6$ for all $x \in A^2_{i_0}$. This implies that $d_G(b, x) \leq d_G(b, c) + d_G(c, x) \leq 7$ for all $x \in A^2_{i_0}$. Let $y \in B^2_{i_0}$. Then for a vertex $b' \in B_{i_0}$ with $d_G(b', y) = 2$,

$$d_G(b, y) \leq d_G(b, b_{i_0}) + d_G(b_{i_0}, b') + d_G(b', y) \leq 2 + 2 + 2.$$

Consequently, $d_G(b, x) \leq 7$ for all $x \in X_{i_0+2}$. Since $7 + 1 \leq i_0 + 2 \leq 3k + \frac{a+1}{2} - 7$, applying Lemma 3.3 with $h = 7$, we see that G has a d-good set, which is a contradiction.

Claim 4.6 For $i_0 \in \{6, 9\}$, $d_G(A^3_{i_0}, B^3_{i_0}) \geq 3$.

Proof. Suppose that there exist $a \in A^3_{i_0}$ and $b \in B^3_{i_0}$ such that $d_G(a, b) \leq 2$. Let $aa_{i_0}a_{i_0+1}a_{i_0}$ be a shortest path joining a and A_{i_0}, and let $bb_{i_0}b_{i_0+1}b_{i_0}$ be a shortest path joining b and B_{i_0}. We first prove the following subclaim.

Subclaim 4.6.1 For $x \in A^3_{i_0}$, we have $d_G(b, x) \leq 8$.
Proof. By way of contradiction, suppose that there exists a vertex $x_{i_0+3} \in A_{i_0}^3$ such that $d_G(b, x_{i_0+3}) \geq 9$. Then $d_G(a, x_{i_0+3}) \geq 7$. Let $x_{i_0+3}a_{i_0+2}a_{i_0+1}a_{i_0}$ be a shortest path joining x_{i_0+3} and A_{i_0}. If $d_G(a_{i_0+2}, x_{i_0+3}) \leq 2$, then
\[d_G(a, x_{i_0+3}) = d_G(a, a_{i_0+2}) + d_G(a_{i_0+2}, x_{i_0+3}) \leq 1 + 2; \]
if $d_G(a_{i_0+2}, a_{i_0}') \leq 2$, then
\[d_G(a, x_{i_0+3}) = d_G(a, a_{i_0+2}) + d_G(a_{i_0+2}, a_{i_0}') + d_G(a_{i_0}', x_{i_0+3}) \leq 1 + 2 + 3. \]
In either case, we obtain a contradiction. Thus
\[d_G(a_{i_0+2}, x_{i_0+3}) \geq 3 \] and $d_G(a_{i_0+2}, a_{i_0}') \geq 3$. (4.4)

Suppose that $d_G(b, a_{i_0+2}) \geq 3$. Now we consider five sets $N_G[x_{i_0+3}], N_G[a_{i_0+2}], N_G[a_{i_0}'], N_G[b], N_G[b_{i_0}]$. Recall that $d_G(b, x_{i_0+3}) \geq 9$. Hence by Claim 4.4 and (4.4), these sets are pairwise disjoint. Since they are subsets of $\bigcup_{i_0-1 \leq i' \leq i_0+4} X_{i'}$, it follows that $|\bigcup_{i_0-1 \leq i' \leq i_0+4} X_{i'}| \geq 5(\delta + 1)$, which contradicts Claim 4.1(ii). Thus $d_G(b, a_{i_0+2}) \leq 2$.

If $d_G(a_{i_0+1}, x_{i_0+3}) \leq 2$, then
\[d_G(a, x_{i_0+3}) = d_G(a, a_{i_0+1}) + d_G(a_{i_0+1}, x_{i_0+3}) \leq 2 + 2; \]
if $d_G(a_{i_0+1}, a_{i_0}') \leq 2$, then
\[d_G(b, x_{i_0+3}) = d_G(b, a_{i_0+2}) + d_G(a_{i_0+2}, a_{i_0+1}) + d_G(a_{i_0+1}, a_{i_0}') + d_G(a_{i_0}', x_{i_0+3}) \]
\[\leq 2 + 1 + 2 + 3; \]
if $d_G(b, a_{i_0+1}) \leq 2$, then
\[d_G(b, x_{i_0+3}) = d_G(b, a_{i_0+1}) + d_G(a_{i_0+1}, a_{i_0}) + d_G(a_{i_0}, a_{i_0}') + d_G(a_{i_0}', x_{i_0+3}) \]
\[\leq 2 + 1 + 2 + 3. \]
In any case, we obtain a contradiction. Thus
\[d_G(a_{i_0+1}, x_{i_0+3}) \geq 3, \] $d_G(a_{i_0+1}, a_{i_0}') \geq 3$ and $d_G(b, a_{i_0+1}) \geq 3$. (4.5)

Now we consider five sets $N_G[x_{i_0+3}], N_G[a_{i_0+1}], N_G[a_{i_0}'], N_G[b], N_G[b_{i_0}]$. By Claim 4.4 and (4.5), these sets are pairwise disjoint. Since they are subsets of $\bigcup_{i_0-1 \leq i' \leq i_0+4} X_{i'}$, it follows that $|\bigcup_{i_0-1 \leq i' \leq i_0+4} X_{i'}| \geq 5(\delta + 1)$, which contradicts Claim 4.1(ii). \[\blacksquare \]

We show that $d_G(b, x) \leq 8$ for all $x \in X_{i_0+3}$. If $x \in A_{i_0}^3$, then by Subclaim 4.6.1, we have $d_G(b, x) \leq 8$. Thus we may assume that $x \in B_{i_0}^3$. Let $b_{i_0}' \in B_{i_0}$ be a vertex with $d_G(b_{i_0}', x) = 3$. Then
\[d_G(b, x) \leq d_G(b, b_{i_0}) + d_G(b_{i_0}, b_{i_0}') + d_G(b_{i_0}', x) \leq 3 + 2 + 3. \]
Consequently, \(d_G(b, x) \leq 8 \) for all \(x \in X_{i_0+3} \). Since \(8 + 1 \leq i_0 + 3 \leq 3k + \frac{2k+1}{2} - 8 \), applying Lemma 3.3 with \(h = 8 \), we see that \(G \) has a \(d \)-good set, which is a contradiction. ■

Claim 4.7 For \(i_0 \in \{6, 9\} \), \(d_G(\bigcup_{0 \leq s \leq 3} A_{i_0}^s, \bigcup_{0 \leq t \leq 3} B_{i_0}^t) \geq 3 \).

Proof. Assume \((s, t) \notin \{(1, 3), (3, 1), (2, 3), (3, 2)\} \) then by Claims 4.4–4.6, \(d_G(A_{i_0}^s, B_{i_0}^t) \geq 3 \). Thus, by symmetry, it suffices to show that \(d_G(A_{i_0}^1, A_{i_0}^2, B_{i_0}^3) \geq 3 \). Suppose that there exist \(a \in A_{i_0}^1 \cup A_{i_0}^2 \) and \(b \in B_{i_0}^3 \) such that \(d_G(a, b) \leq 2 \) (i.e., \(N_G(a) \cap N_G(b) \neq \emptyset \)). Let \(c \in N_G(a) \cap N_G(b) \). Note that \(c \in A_{i_0}^2 \cup B_{i_0}^3 \cup A_{i_0}^3 \cup B_{i_0}^3 \). By Claim 4.6, \(c \notin A_{i_0}^4 \).

If \(c \in A_{i_0}^2 \), then for a vertex \(b' \in N_G(c) \cap B_{i_0}^2 \), \(d_G(c, b') \leq d_G(c, b) + d_G(b, b') = 2 \), which contradicts Claim 4.5. Thus \(c \in B_{i_0}^2 \cup B_{i_0}^3 \). Then for a vertex \(c' \in N_G(c) \cap B_{i_0}^2 \), \(d_G(a, c') = d_G(a, c) + d_G(c, c') \leq 2 \), which contradicts Claim 4.4 or 4.5. ■

Considering Claim 4.6, without loss of generality, we may assume that \(A_{i_0}^3 = A_9 \) and \(B_{i_0}^3 = B_9 \). Let \(A'_i := A_{i_0}^{i-6} \) and \(B'_i := B_{i_0}^{i-6} \) for each \(i \) \((6 \leq i \leq 9)\) and let \(A'_i := A_{i_0}^{i-9} \) and \(B'_i := B_{i_0}^{i-9} \) for each \(i \) \((10 \leq i \leq 12)\).

Claim 4.8 We have \(d_G(\bigcup_{6 \leq i \leq 12} A'_i, \bigcup_{6 \leq i \leq 12} B'_i) \geq 3 \).

Proof. Suppose that \(d_G(\bigcup_{6 \leq i \leq 12} A'_i, \bigcup_{6 \leq i \leq 12} B'_i) \leq 2 \). Then by Claim 4.7, \(d_G(A_{6'}^{10}, B_{6'}^{10}) = 2 \) or \(d_G(A_{10}^{10}, B_{6'}^{10}) = 2 \). Without loss of generality, we may assume that there exist \(a \in A_{6'} \) \((= A_{9}^{0})\) and \(b \in B_{10}^{10} \) \((= B_{9}^{0})\) such that \(d_G(a, b) = 2 \). Let \(c \in N_G(a) \cap N_G(b) \). Note that \(c \in X_9 \). If \(c \in A_{6'} \) \((= A_{9}^{0})\), then \(d_G(A_{6'}^{10}, B_{9}^{10}) = d_G(c, b) = 1 \); if \(c \in B_{10}^{10} \) \((= B_{9}^{0})\), then \(d_G(A_{6'}^{10}, B_{9}^{10}) = d_G(a, c) = 1 \). In either case, we obtain a contradiction. ■

Claim 4.9 There exists an index \(i_0 \in \{6, 8, 10\} \) and there exists a vertex \(a_{i_0} \in A_{i_0}^\prime \) such that \(d_G(a_{i_0}, x) = 2 \) for all \(x \in A_{i_0+2}^\prime \).

Proof. By way of contradiction, suppose that the claim does not hold. We recursively define vertices \(a_i \in A_i^\prime \) \((i \in \{6, 8, 10, 12\})\) as follows: Let \(a_6 \in A_6^\prime \). For each \(i \in \{6, 8, 10\} \), by the assumption that the claim does not hold, there exists a vertex \(a_{i+2} \in A_{i+2}^\prime \) such that \(d_G(a_i, a_{i+2}) \geq 3 \). Then \(N_G(a_i) \) \((i \in \{6, 8, 10, 12\})\) are pairwise disjoint. For each \(j \in \{6, 9, 12\} \), let \(b_j \in B_j^\prime \). Then by Claim 4.8, \(N_G(a_i) \) \((i \in \{6, 8, 10, 12\})\) and \(N_G(b_j) \) \((j \in \{6, 9, 12\})\) are pairwise disjoint. Since these sets are subsets of \(\bigcup_{5 \leq i \leq 13} X_i \), it follows that \(|\bigcup_{5 \leq i \leq 13} X_i| \geq 7(\delta + 1)\), which contradicts Claim 4.1(i). ■

By symmetry, we obtain the following claim.
Claim 4.10 For some index \(j_0 \in \{6, 8, 10\} \), there exists a vertex \(b_{j_0} \in B'_{j_0} \) such that \(d_G(b_{j_0}, y) = 2 \) for all \(y \in B'_{j_0+2} \).

Let \(a_{i_0} \) and \(b_{j_0} \) as in Claims 4.9 and 4.10, respectively. Let \(a_0a_1^*a_2^* \cdots a_{i_0}^* \) be a shortest path joining \(a_0 \) and \(a_{i_0} \), where \(a_{i_0}^* = a_{i_0} \), and let \(a_0b_1^*b_2^* \cdots b_{j_0}^* \) be a shortest path joining \(a_0 \) and \(b_{j_0} \), where \(b_{j_0}^* = b_{j_0} \).

Fix an index \(l \left(3k + \frac{a-3}{2} \leq l \leq 3k + \frac{a+1}{2} \right) \) and a vertex \(x \in X_l \). Then there exists a vertex \(y \in X_{12} \) such that \(d_G(y, x) = l - 12 \). Note that either \(y \in A'_{12} \) or \(y \in B'_{12} \).

If \(y \in A'_{12} \), then there exists a vertex \(y' \in A'_{i_0+2} \) such that \(d_G(y', y) = 12 - (i_0 + 2) = 10 - i_0 \), and hence
\[
d_G(a_0^*, x) \leq d_G(a_0^*, a_{i_0}^*) + d_G(a_{i_0}^*, y') + d_G(y', y) + d_G(y, x) \\
= (i_0 - 2) + 2 + (10 - i_0) + (l - 12) \\
= l - 2;
\]

If \(y \in B'_{12} \), then there exists a vertex \(y' \in B'_{j_0+2} \) such that \(d_G(y', y) = 12 - (j_0 + 2) = 10 - j_0 \), and hence
\[
d_G(b_{j_0}^*, x) \leq d_G(b_{j_0}^*, b_{j_0}) + d_G(b_{j_0}, y') + d_G(y', y) + d_G(y, x) \\
= (j_0 - 2) + 2 + (10 - j_0) + (l - 12) \\
= l - 2.
\]

In either case, we have \(d_G(\{a_0^*, b_{j_0}^*\}, x) \leq l - 2 \). Therefore by Lemma 3.6, \(G \) has a \(d \)-good set, which is a contradiction.

This completes the proof of Theorem 1.1.

5 The case \(d \in \{5, 9\} \)

In this section, we prove Theorem 1.2, dividing the proof into two cases. We first consider the case where \(d = 5 \).

Theorem 5.1 Let \(G \) be a connected graph. If \(|V(G)| < \frac{7(\delta(G)+1)}{3} \), then there exists a spanning tree \(T \) of \(G \) such that \(\text{diam}(T) \leq 5 \).

Proof. Suppose that \(G \) has no spanning tree \(T \) such that \(\text{diam}(T) \leq 5 \). Then by Lemma 3.1, \(G \) has no 5-good set. In particular, \(\text{ecc}_G(x) \geq 3 \) for every \(x \in V(G) \), and hence there exists a path \(a_0a_1a_2a_3 \) such that \(d_G(a_0, a_3) = 3 \).

Claim 5.1 For each \(i \in \{0, 2\} \), \(|N_G[a_i] \cap N_G[a_{i+1}]| > \frac{2(\delta(G)+1)}{3} \).
Proof. Since \(\{a_i, a_{i+1}\} \) is not 5-good, there exists a vertex \(x \in V(G) \) such that
\[
d_G(\{a_i, a_{i+1}\}, x) \geq 3 \quad \text{(i.e., } (N_G[a_i] \cup N_G[a_{i+1}]) \cap N_G[x] = \emptyset).\]
Then
\[
|V(G)| \geq |N_G[a_i] \cup N_G[a_{i+1}] \cup N_G[x]|
= |N_G[a_i]| + |N_G[a_{i+1}]| - |N_G[a_i] \cap N_G[a_{i+1}]| + |N_G[x]|
\geq 3(\delta(G) + 1) - |N_G[a_i] \cap N_G[a_{i+1}]|.
\]
Since \(|V(G)| < \frac{7(\delta(G)+1)}{3} \), this leads to the desired inequality. ■

Since \(N_G[a_0] \cap N_G[a_3] = \emptyset \), it follows from Claim 5.1 that
\[
|(N_G[a_0] \cap N_G[a_1]) \cup (N_G[a_2] \cap N_G[a_3])| = |N_G[a_0] \cap N_G[a_1]| + |N_G[a_2] \cap N_G[a_3]|
\geq \frac{4(\delta(G) + 1)}{3}.
\]
(5.1)
Since \(\{a_1, a_2\} \) is not 5-good, there exists a vertex \(x \in V(G) \) such that
\[
d_G(\{a_1, a_2\}, x) \geq 3 \quad \text{(i.e., } (N_G[a_1] \cup N_G[a_2]) \cap N_G[x] = \emptyset).\]
It follows from (5.1) that
\[
|V(G)| \geq |(N_G[a_0] \cap N_G[a_1]) \cup (N_G[a_2] \cap N_G[a_3]) \cup N_G[x]|
= |(N_G[a_0] \cap N_G[a_1]) \cup (N_G[a_2] \cap N_G[a_3])| + |N_G[x]|
\geq \frac{4(\delta(G) + 1)}{3} + (\delta(G) + 1)
= \frac{7(\delta(G) + 1)}{3},
\]
which contradicts the assumption of the theorem. ■

Next we prove Theorem 1.2 for the case where \(d = 9 \).

Theorem 5.2 Let \(G \) be a connected graph. If \(|V(G)| < \frac{11(\delta(G)+1)}{4}\), then there exists a spanning tree \(T \) of \(G \) such that \(\text{diam}(T) \leq 9 \).

Proof. Suppose that \(G \) has no spanning tree \(T \) such that \(\text{diam}(T) \leq 9 \). Then by Lemma 3.1, \(G \) has no 9-good set.

Claim 5.2 There exist no four vertices \(u_1, \ldots, u_4 \in V(G) \) such that \(N_G[u_i] \) (1 \(\leq \) \(i \leq 4 \)) are pairwise disjoint.

Proof. If \(N_G[u_i] \) (1 \(\leq \) \(i \leq 4 \)) are pairwise disjoint for four vertices \(u_1, \ldots, u_4 \in V(G) \), then
\[
\frac{11(\delta(G) + 1)}{3} \geq |V(G)|
\geq 4(\delta(G) + 1),
\]
which is a contradiction. ■
Claim 5.3 For \(a \in V(G) \), \(N_G^6(a) = \emptyset \).

Proof. Suppose that \(N_G^6(a) \neq \emptyset \), and let \(x \in N_G^6(a) \). Let \(b_0b_1 \cdots b_6 \) be a path joining \(a \) and \(x \), where \(b_0 = a \) and \(b_6 = x \). For \(i \in \{2, 4\} \), since \(\{b_3, b_i\} \) is not 9-good, there exists a vertex \(y_i \in V(G) \) such that \(d_G(\{b_3, b_i\}, y_i) \geq 5 \). In particular, \((N_G[b_0] \cup N_G[b_3]) \cap N_G[y_2] = \emptyset \) and \((N_G[b_3] \cup N_G[b_6]) \cap N_G[y_4] = \emptyset \).

Since \(N_G[b_0], N_G[b_3] \) and \(N_G[b_6] \) are pairwise disjoint, it follows from Claim 5.2 that \(N_G[b_6] \cap N_G[y_2] \neq \emptyset \) and \(N_G[b_0] \cap N_G[y_4] \neq \emptyset \). Thus
\[
5 \leq d_G(b_3, y_2) \leq d_G(b_3, b_6) + d_G(b_6, y_2) \leq 3 + 2
\]
and
\[
5 \leq d_G(b_3, y_4) \leq d_G(b_3, b_0) + d_G(b_0, y_4) \leq 3 + 2.
\]
This forces \(d_G(b_6, y_2) = d_G(b_0, y_4) = 2 \). Hence there exist vertices \(y'_2 \in N_G(b_6) \cap N_G(y_2) \) and \(y'_4 \in N_G(b_0) \cap N_G(y_4) \).

If \((N_G[b_3] \cup N_G[b_4]) \cap N_G[y_4] \neq \emptyset \), then we easily verify that \(d_G(\{b_3, b_4\}, y_4) \leq 4 \), which is a contradiction. Thus \((N_G[b_1] \cup N_G[b_4]) \cap N_G[y_4] = \emptyset \). This together with the fact that \(d_G(b_1, b_4) = 3 \) implies that \(N_G[b_1], N_G[b_4] \) and \(N_G[y_4] \) are pairwise disjoint. It follows from Claim 5.2 that \((N_G[b_1] \cup N_G[b_4] \cup N_G[y_4]) \cap N_G[y'_2] \neq \emptyset \). If \(N_G[b_1] \cap N_G[y'_2] \neq \emptyset \), then
\[
d_G(b_2, y_2) \leq d_G(b_2, b_1) + d_G(b_1, y'_2) + d_G(y'_2, y_2) \leq 1 + 2 + 1;
\]
if \(N_G[b_4] \cap N_G[y'_2] \neq \emptyset \), then
\[
d_G(b_3, y_2) \leq d_G(b_3, b_4) + d_G(b_4, y'_2) + d_G(y'_2, y_2) \leq 1 + 2 + 1.
\]
In either case, we obtain \(d_G(\{b_2, b_3\}, y_2) \leq 4 \), which contradicts the choice of \(y_2 \).
Thus \(N_G[y_4] \cap N_G[y'_2] \neq \emptyset \). Then
\[
d_G(b_0, b_6) \leq d_G(b_0, y_4) + d_G(y_4, y'_2) + d_G(y'_2, b_6) \leq 2 + 2 + 1,
\]
which is a contradiction. \(\blacksquare \)

Claim 5.4 Let \(u_0u_1 \cdots u_5 \) be a path such that \(d_G(u_0, u_5) = 5 \). Then \(|N_G[u_2] \cap N_G[u_3]| < \frac{2(\delta(G)+1)}{3} \).

Proof. Since \(\{u_2, u_3\} \) is not 9-good, there exists a vertex \(x \in V(G) \) such that \(d_G(\{u_2, u_3\}, x) \geq 5 \). For every \(i \ (0 \leq i \leq 5) \), since \(d_G(\{u_2, u_3\}, u_i) \leq 2 \), we have \(d_G(u_i, x) \geq 3 \). In particular,
\[
((N_G[u_2] \cap N_G[u_3]) \cup N_G[u_0] \cup N_G[u_5]) \cap N_G[x] = \emptyset.
\] (5.2)
If \(N_G[u_2] \cap N_G[u_3], N_G[u_0] \text{ and } N_G[u_5]\) are not pairwise disjoint, then we can verify that there exists a path of length at most 4 joining \(u_0\) and \(u_5\), which contradicts the fact that \(d_G(u_0, u_5) = 5\). Thus \(N_G[u_2] \cap N_G[u_3], N_G[u_0] \text{ and } N_G[u_5]\) are pairwise disjoint. This together with (5.2) implies that

\[
|V(G)| \geq |(N_G[u_2] \cap N_G[u_3]) \cup N_G[u_0] \cup N_G[u_5] \cup N_G[x]|
\geq |N_G[u_2] \cap N_G[u_3]| + 3(\delta(G) + 1).
\]

Since \(|V(G)| < \frac{11(\delta(G) + 1)}{3}\), it follows that the desired conclusion holds.

Let \(a_0 \in V(G)\). Since \(\{a_0\}\) is not 9-good, \(ecc_G(a_0) \geq 5\). Hence there exists a path \(a_0a_1 \cdots a_5\) such that \(d_G(a_0, a_5) = 5\).

Claim 5.5 For \(i \in \{0, 4\}, |N_G[a_i] \cap N_G[a_{i+1}]| < \frac{2(\delta(G) + 1)}{3}\).

Proof. By symmetry, it suffices to show that \(|N_G[a_0] \cap N_G[a_1]| < \frac{2(\delta(G) + 1)}{3}\). Since \(\{a_2, a_3\}\) is not 9-good, it follows from Claim 5.3 that there exists a vertex \(x \in V(G)\) such that \(d_G(a_2), x) = d_G(a_3, x) = 5\). Let \(a_3b_1 \cdots b_5\) be a shortest path joining \(a_3\) and \(x\), where \(b_5 = x\).

Since \(\{a_3, b_1\}\) is not 9-good, there exists a vertex \(z \in V(G)\) such that \(d_G(a_3, z) = d_G(b_1, z) = 5\). Then

\[
\left(\bigcup_{1 \leq i \leq 5} N_G[a_i] \right) \cup \left(\bigcup_{1 \leq i \leq 3} N_G[b_i] \right) \cap N_G[z] = \emptyset. \tag{5.3}
\]

If \(N_G[a_2] \cap N_G[b_3] \neq \emptyset\), then

\[
d_G(a_2, x) \leq d_G(a_2, b_3) + d_G(b_3, b_5) \leq 2 + 2,
\]

which is a contradiction. Thus \(N_G[a_2] \cap N_G[b_3] = \emptyset\).

If \(N_G[a_3] \cap N_G[b_3] = \emptyset\), then it follows from (5.3) that \(N_G[a_2], N_G[a_3], N_G[b_3]\) and \(N_G[z]\) are pairwise disjoint, which contradicts Claim 5.2. Thus \(N_G[a_5] \cap N_G[b_3] \neq \emptyset\).

If \(N_G[a_0] \cap N_G[b_3] \neq \emptyset\), then

\[
d_G(a_0, a_5) \leq d_G(a_0, b_3) + d_G(b_3, a_5) \leq 2 + 2,
\]

which contradicts the fact that \(d_G(a_0, a_5) = 5\). Thus \(N_G[a_0] \cap N_G[b_3] = \emptyset\). Consequently, \(N_G[a_0], N_G[a_3]\) and \(N_G[b_3]\) are pairwise disjoint. This together with Claim 5.2 and (5.3) implies that \(N_G[a_0] \cap N_G[z] \neq \emptyset\), and hence

\[
5 \leq d_G(a_3, z) \leq d_G(a_3, a_0) + d_G(a_0, z) \leq 3 + 2.
\]
This forces $d_G(a_0, z) = 2$. It follows that the path $a_3 a_2 a_1 a_0 z'$, where $z' \in N_G(a_0) \cap N_G(z)$, is a shortest path joining a_3 and z. Consequently it follows from Claim 5.4 that $|N_G[a_0] \cap N_G[a_1]| < \frac{2(\delta(G)+1)}{3}$.

By Claim 5.5, for $i \in \{0, 4\}$,

$$|N_G[a_i] \cup N_G[a_{i+1}]| = |N_G[a_i]| + |N_G[a_{i+1}]| - |N_G[a_i] \cap N_G[a_{i+1}]|
\geq 2(\delta(G)+1) - \frac{2(\delta(G)+1)}{3}
= \frac{4(\delta(G)+1)}{3}.$$

Since $d_G(a_0, a_5) = 5$, we have $(N_G[a_0] \cup N_G[a_1]) \cap (N_G[a_4] \cup N_G[a_5]) = \emptyset$.

Let $x \in V(G)$. If $(N_G[a_0] \cup N_G[a_1] \cup N_G[a_4] \cup N_G[a_5]) \cap N_G[x] = \emptyset$, then

$$|V(G)| \geq |N_G[a_0] \cup N_G[a_1] \cup N_G[a_4] \cup N_G[a_5] \cup N_G[x]|
= |N_G[a_0] \cup N_G[a_1]| + |N_G[a_4] \cup N_G[a_5]| + |N_G[x]|
\geq 2 \cdot \frac{4(\delta(G)+1)}{3} + (\delta(G)+1)
= \frac{11(\delta(G)+1)}{3},$$

which is a contradiction. Thus $(N_G[a_0] \cup N_G[a_1] \cup N_G[a_4] \cup N_G[a_5]) \cap N_G[x] \neq \emptyset$. Therefore we have $d_G(\{a_0, a_1\}, x) \leq 2$ or $d_G(\{a_4, a_5\}, x) \leq 2$, which leads to $d_G(\{a_2, a_3\}, x) \leq 4$. Since x is arbitrary, $\{a_2, a_3\}$ is 9-good, which is a contradiction. This completes the proof of Theorem 5.2.

Acknowledgment

The authors would like to thank Professor Mikio Kano for his helpful comments. This work was supported by JSPS KAKENHI Grant number JP18K13449 (to M.F).

References

